Dropout

Dropout [1] is a technique for regularizing neural networks by randomly setting some features to zero during the forward pass. In this exercise you will implement a dropout layer and modify your fully-connected network to optionally use dropout.

[1] Geoffrey E. Hinton et al, "Improving neural networks by preventing co-adaptation of feature detectors", arXiv 2012


In [1]:
# As usual, a bit of setup

import time
import numpy as np
import matplotlib.pyplot as plt
from cs231n.classifiers.fc_net import *
from cs231n.data_utils import get_CIFAR10_data
from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array
from cs231n.solver import Solver

%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

def rel_error(x, y):
  """ returns relative error """
  return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))

In [2]:
# Load the (preprocessed) CIFAR10 data.

data = get_CIFAR10_data()
for k, v in data.iteritems():
  print '%s: ' % k, v.shape


X_val:  (1000L, 3L, 32L, 32L)
X_train:  (49000L, 3L, 32L, 32L)
X_test:  (1000L, 3L, 32L, 32L)
y_val:  (1000L,)
y_train:  (49000L,)
y_test:  (1000L,)

Dropout forward pass

In the file cs231n/layers.py, implement the forward pass for dropout. Since dropout behaves differently during training and testing, make sure to implement the operation for both modes.

Once you have done so, run the cell below to test your implementation.


In [22]:
x = np.random.randn(500, 500) + 10

for p in [0.3, 0.6, 0.75]:
  out, _ = dropout_forward(x, {'mode': 'train', 'p': p})
  out_test, _ = dropout_forward(x, {'mode': 'test', 'p': p})

  print 'Running tests with p = ', p
  print 'Mean of input: ', x.mean()
  print 'Mean of train-time output: ', out.mean()
  print 'Mean of test-time output: ', out_test.mean()
  print 'Fraction of train-time output set to zero: ', (out == 0).mean()
  print 'Fraction of test-time output set to zero: ', (out_test == 0).mean()
  print
  
  # p = probability of dropping neron.
  # so, bigger p -> more dropout, smaller p -> less dropout


Running tests with p =  0.3
Mean of input:  9.99607220323
Mean of train-time output:  23.3926826532
Mean of test-time output:  9.99607220323
Fraction of train-time output set to zero:  0.297888
Fraction of test-time output set to zero:  0.0

Running tests with p =  0.6
Mean of input:  9.99607220323
Mean of train-time output:  6.63945059093
Mean of test-time output:  9.99607220323
Fraction of train-time output set to zero:  0.601508
Fraction of test-time output set to zero:  0.0

Running tests with p =  0.75
Mean of input:  9.99607220323
Mean of train-time output:  3.30435403886
Mean of test-time output:  9.99607220323
Fraction of train-time output set to zero:  0.752072
Fraction of test-time output set to zero:  0.0

Dropout backward pass

In the file cs231n/layers.py, implement the backward pass for dropout. After doing so, run the following cell to numerically gradient-check your implementation.


In [23]:
x = np.random.randn(10, 10) + 10
dout = np.random.randn(*x.shape)

dropout_param = {'mode': 'train', 'p': 0.8, 'seed': 123}
out, cache = dropout_forward(x, dropout_param)
dx = dropout_backward(dout, cache)
dx_num = eval_numerical_gradient_array(lambda xx: dropout_forward(xx, dropout_param)[0], x, dout)

print 'dx relative error: ', rel_error(dx, dx_num)


dx relative error:  1.89289935071e-11

Fully-connected nets with Dropout

In the file cs231n/classifiers/fc_net.py, modify your implementation to use dropout. Specificially, if the constructor the the net receives a nonzero value for the dropout parameter, then the net should add dropout immediately after every ReLU nonlinearity. After doing so, run the following to numerically gradient-check your implementation.


In [29]:
N, D, H1, H2, C = 2, 15, 20, 30, 10
X = np.random.randn(N, D)
y = np.random.randint(C, size=(N,))

for dropout in [0, 0.25, 0.5]:
  print 'Running check with dropout = ', dropout
  model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C,
                            weight_scale=5e-2, dtype=np.float64,
                            dropout=dropout, seed=123)

  loss, grads = model.loss(X, y)
  print 'Initial loss: ', loss

  for name in sorted(grads):
    f = lambda _: model.loss(X, y)[0]
    grad_num = eval_numerical_gradient(f, model.params[name], verbose=False, h=1e-5)
    print '%s relative error: %.2e' % (name, rel_error(grad_num, grads[name]))
  print


Running check with dropout =  0
Initial loss:  2.30304316117
W1 relative error: 4.80e-07
W2 relative error: 1.97e-07
W3 relative error: 1.56e-07
b1 relative error: 2.03e-08
b2 relative error: 1.69e-09
b3 relative error: 1.11e-10

Running check with dropout =  0.25
Initial loss:  2.33301403728
W1 relative error: 9.25e-08
W2 relative error: 2.54e-08
W3 relative error: 2.59e-08
b1 relative error: 3.78e-10
b2 relative error: 4.18e-09
b3 relative error: 1.40e-10

Running check with dropout =  0.5
Initial loss:  2.29944002906
W1 relative error: 3.39e-08
W2 relative error: 8.88e-08
W3 relative error: 2.38e-08
b1 relative error: 9.94e-10
b2 relative error: 8.03e-10
b3 relative error: 1.43e-10

Regularization experiment

As an experiment, we will train a pair of two-layer networks on 500 training examples: one will use no dropout, and one will use a dropout probability of 0.75. We will then visualize the training and validation accuracies of the two networks over time.


In [30]:
# Train two identical nets, one with dropout and one without

num_train = 500
small_data = {
  'X_train': data['X_train'][:num_train],
  'y_train': data['y_train'][:num_train],
  'X_val': data['X_val'],
  'y_val': data['y_val'],
}

solvers = {}
dropout_choices = [0, 0.75]
for dropout in dropout_choices:
  model = FullyConnectedNet([500], dropout=dropout)
  print dropout

  solver = Solver(model, small_data,
                  num_epochs=25, batch_size=100,
                  update_rule='adam',
                  optim_config={
                    'learning_rate': 5e-4,
                  },
                  verbose=True, print_every=100)
  solver.train()
  solvers[dropout] = solver


0
(Iteration 1 / 125) loss: 8.596245
(Epoch 0 / 25) train acc: 0.252000; val_acc: 0.177000
(Epoch 1 / 25) train acc: 0.284000; val_acc: 0.184000
cs231n\layers.py:646: RuntimeWarning: divide by zero encountered in log
  dx[np.arange(N), y] -= 1
(Epoch 2 / 25) train acc: 0.348000; val_acc: 0.215000
(Epoch 3 / 25) train acc: 0.424000; val_acc: 0.216000
(Epoch 4 / 25) train acc: 0.454000; val_acc: 0.240000
(Epoch 5 / 25) train acc: 0.536000; val_acc: 0.236000
(Epoch 6 / 25) train acc: 0.624000; val_acc: 0.264000
(Epoch 7 / 25) train acc: 0.696000; val_acc: 0.276000
(Epoch 8 / 25) train acc: 0.728000; val_acc: 0.300000
(Epoch 9 / 25) train acc: 0.758000; val_acc: 0.278000
(Epoch 10 / 25) train acc: 0.820000; val_acc: 0.258000
(Epoch 11 / 25) train acc: 0.850000; val_acc: 0.278000
(Epoch 12 / 25) train acc: 0.872000; val_acc: 0.295000
(Epoch 13 / 25) train acc: 0.892000; val_acc: 0.294000
(Epoch 14 / 25) train acc: 0.930000; val_acc: 0.298000
(Epoch 15 / 25) train acc: 0.930000; val_acc: 0.300000
(Epoch 16 / 25) train acc: 0.954000; val_acc: 0.295000
(Epoch 17 / 25) train acc: 0.952000; val_acc: 0.293000
(Epoch 18 / 25) train acc: 0.958000; val_acc: 0.319000
(Epoch 19 / 25) train acc: 0.968000; val_acc: 0.313000
(Epoch 20 / 25) train acc: 0.972000; val_acc: 0.305000
(Iteration 101 / 125) loss: 0.000008
(Epoch 21 / 25) train acc: 0.996000; val_acc: 0.307000
(Epoch 22 / 25) train acc: 0.984000; val_acc: 0.296000
(Epoch 23 / 25) train acc: 0.992000; val_acc: 0.319000
(Epoch 24 / 25) train acc: 0.988000; val_acc: 0.322000
(Epoch 25 / 25) train acc: 0.980000; val_acc: 0.320000
0.75
(Iteration 1 / 125) loss: 5.686769
(Epoch 0 / 25) train acc: 0.214000; val_acc: 0.184000
(Epoch 1 / 25) train acc: 0.328000; val_acc: 0.219000
(Epoch 2 / 25) train acc: 0.364000; val_acc: 0.233000
(Epoch 3 / 25) train acc: 0.394000; val_acc: 0.240000
(Epoch 4 / 25) train acc: 0.452000; val_acc: 0.261000
(Epoch 5 / 25) train acc: 0.484000; val_acc: 0.255000
(Epoch 6 / 25) train acc: 0.598000; val_acc: 0.299000
(Epoch 7 / 25) train acc: 0.590000; val_acc: 0.279000
(Epoch 8 / 25) train acc: 0.590000; val_acc: 0.301000
(Epoch 9 / 25) train acc: 0.624000; val_acc: 0.288000
(Epoch 10 / 25) train acc: 0.636000; val_acc: 0.277000
(Epoch 11 / 25) train acc: 0.692000; val_acc: 0.298000
(Epoch 12 / 25) train acc: 0.684000; val_acc: 0.306000
(Epoch 13 / 25) train acc: 0.616000; val_acc: 0.265000
(Epoch 14 / 25) train acc: 0.726000; val_acc: 0.307000
(Epoch 15 / 25) train acc: 0.726000; val_acc: 0.300000
(Epoch 16 / 25) train acc: 0.808000; val_acc: 0.291000
(Epoch 17 / 25) train acc: 0.802000; val_acc: 0.293000
(Epoch 18 / 25) train acc: 0.796000; val_acc: 0.310000
(Epoch 19 / 25) train acc: 0.806000; val_acc: 0.312000
(Epoch 20 / 25) train acc: 0.858000; val_acc: 0.299000
(Iteration 101 / 125) loss: 20.383568
(Epoch 21 / 25) train acc: 0.900000; val_acc: 0.317000
(Epoch 22 / 25) train acc: 0.886000; val_acc: 0.331000
(Epoch 23 / 25) train acc: 0.866000; val_acc: 0.326000
(Epoch 24 / 25) train acc: 0.910000; val_acc: 0.308000
(Epoch 25 / 25) train acc: 0.892000; val_acc: 0.315000

In [31]:
# Plot train and validation accuracies of the two models

train_accs = []
val_accs = []
for dropout in dropout_choices:
  solver = solvers[dropout]
  train_accs.append(solver.train_acc_history[-1])
  val_accs.append(solver.val_acc_history[-1])

plt.subplot(3, 1, 1)
for dropout in dropout_choices:
  plt.plot(solvers[dropout].train_acc_history, 'o', label='%.2f dropout' % dropout)
plt.title('Train accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(ncol=2, loc='lower right')
  
plt.subplot(3, 1, 2)
for dropout in dropout_choices:
  plt.plot(solvers[dropout].val_acc_history, 'o', label='%.2f dropout' % dropout)
plt.title('Val accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(ncol=2, loc='lower right')

plt.gcf().set_size_inches(15, 15)
plt.show()


Question

Explain what you see in this experiment. What does it suggest about dropout?

Answer

As we can see, the network without dropout got almost 100% accuracy on the training which suggests it's going towards overfitiing. The network with the dropout don't easily get high accuracy on the training which means its kind of regularize the model.

indeed as we saw in class, droput is some kind of regularization :)